[1] |
ANSCOMBE F J, GUTTMAN I. Rejection of outliers[J]. Technometrics, 1960, 2(2):123-146.
|
[2] |
CHANDOLA V, BANERJEE A, KUMAR V. Anomaly detection: A survey[J]. ACM Computing Surveys (CSUR), 2009, 41(3): 1-58.
|
[3] |
ASEFI S, MITROVIC M, ĆETENOVIĆ D, et al. Anomaly detection and classification in power system state estimation: Combining model-based and data-driven methods[J]. Sustainable Energy, Grids and Networks, 2023, 35: 101116.
|
[4] |
KNORR E M, NG R T. Finding intensional knowledge of distance-based outliers[C]// Proceedings of 25th International Conference on Very Large Data Bases,1999:211-222.
|
[5] |
ANGIULLI F, PIZZUTI C. Fast outlier detection in high dimensional spaces[C]// European conference on principles of data mining and knowledge discovery. Berlin, Heidelberg: Springer Berlin Heidelberg,2002:15-27.
|
[6] |
李碧君, 薛禹胜, 顾锦汶, 等. 基于快速分解正交变换状态估计算法的坏数据检测与辨识[J]. 电力系统自动化, 1999, 23(20):1-4,26.
|
|
LI Bijun, XUE Yusheng, GU Jinwen, et al. Bad data detection and identification based on fast decomposition orthogonal transform state estimation algorithm[J]. Automation of Electric Power Systems, 1999, 23(20):1-4,26.
|
[7] |
BREUNIG M M, KRIEGEL H P, NG R T, et al. Optics-of: Identifying local outliers[C]// Proceedings of Third European Conference on Principles of Data Mining and Knowledge Discovery.1999: 262-270.
|
[8] |
BREUNIG M M, KRIEGEL H P, NG R T, et al. LOF: Identifying density-based local outliers[C]// Proceedings of the 2000 ACM SIGMOD International Conference on Management of Data. 2000: 93-104.
|
[9] |
LIU S Y, ZHAO Y X, LIN Z Z, et al. Data-driven event detection of power systems based on unequal-interval reduction of PMU data and local outlier factor[J]. IEEE Transactions on Smart Grid, 2019, 11(2): 1630-1643.
|
[10] |
YU S Q, LI X R, ZHAO L Y, et al. Hyperspectral anomaly detection based on low-rank representation using local outlier factor[J]. IEEE Geoscience and Remote Sensing Letters, 2020, 18(7): 1279-1283.
|
[11] |
MA J, TENG Z S, TANG Q, et al. Measurement error prediction of power metering equipment using improved local outlier factor and kernel support vector regression[J]. IEEE Transactions on Industrial Electronics, 2021, 69(9): 9575-9585.
|
[12] |
TIRULO A, CHAUHAN S, ISSAC B. Ensemble LOF-based detection of false data injection in smart grid demand response system[J]. Computers and Electrical Engineering, 2024, 116: 109188.
|
[13] |
ZHANG J F, ZHANG H, DING S, et al. Power consumption predicting and anomaly detection based on transformer and K-means[J]. Frontiers in Energy Research, 2021,9: 779587.
|
[14] |
NI Y R, ZENG X J, LIU Z L, et al. Faulty feeder detection of single phase-to-ground fault for distribution networks based on improved K-means power angle clustering analysis[J]. International Journal of Electrical Power & Energy Systems, 2022, 142: 108252.
|
[15] |
HUANG L, CHANG J, YANG F, et al. An anomaly detection method for electric power information system based on improved k-means[J]. Journal of Shenzhen University Science & Engineering, 2020, 37(2):214-220.
|
[16] |
CHIANG H D, XU T S, LV X L, et al. Hierarchical trust-tech-enhanced k-means methods and their applications to power grids[J]. IEEE Open Access Journal of Power and Energy, 2022, 9: 560-572.
|
[17] |
YANG Y N, XUE Y, CAI H, et al. Electricity stealing time recognition method based on difference and K-means clustering[C]// IOP Conference Series: Earth and Environmental Science. IOP Publishing, 2021, 647(1): 012075.
|
[18] |
LENG D, QIU Z. Identification of anomaly detection in power system state estimation based on fuzzy C-means algorithm[J]. International Transactions on Electrical Energy Systems, 2023: 7553080.
|
[19] |
ANGELOS E W S, SAAVEDRA O R, CORTÉS O A C, et al. Detection and identification of abnormalities in customer consumptions in power distribution systems[J]. IEEE Transactions on Power Delivery, 2011, 26(4): 2436-2442.
|
[20] |
宋军英, 何聪, 李欣然, 等. 基于特征指标降维及熵权法的日负荷曲线聚类方法[J]. 电力系统自动化, 2019, 43(20): 65-72.
|
|
SONG Junying, HE Cong, LI Xinran, et al. Daily load curve clustering method based on feature index dimension reduction and entropy weight method[J]. Automation of Electric Power Systems, 2019, 43(20):65-72.
|
[21] |
MIRAFTABZADEH S M, LONGO M, BRENNA M. Knowledge extraction from PV power generation with deep learning autoencoder and clustering-based algorithms[J]. IEEE Access, 2023, 11: 69227-69240.
|
[22] |
LIU W J, LEI P F, XU D, et al. Anomaly recognition diagnosis and prediction of massive data flow based on time-GAN and DBSCAN for power dispatching automation system[J]. Processes, 2023, 11(9): 2782.
|
[23] |
MA W, MA M, ZHANG Z, et al. Anomaly detection of mountain photovoltaic power plant based on spectral clustering[J]. IEEE Journal of Photovoltaics, 2023, 13(4): 621-631.
|
[24] |
PARVEZ I, AGHILI M, SARWAT A I, et al. Online power quality disturbance detection by support vector machine in smart meter[J]. Journal of Modern Power Systems and Clean Energy, 2019, 7(5): 1328-1339.
|
[25] |
CHOI J, ROSHANZADEH B, MARTINEZ-RAMON M, et al. An unsupervised cyberattack detection scheme for AC microgrids using Gaussian process regression and one-class support vector machine anomaly detection[J]. IET Renewable Power Generation, 2023, 17(8): 2113-2123.
|
[26] |
武玉坤, 李伟, 倪敏雅, 等. 单类支持向量机融合深度自编码器的异常检测模型[J]. 计算机科学, 2022, 49(3):144-151.
doi: 10.11896/jsjkx.210100142
|
|
WU Yukun, LI Wei, NI Minya, et al. Anomaly detection model based on one-class support vector machine fused deep auto-encoder[J]. Computer Science, 2022, 49(3):144-151.
doi: 10.11896/jsjkx.210100142
|
[27] |
ROY S D, DEBBARMA S. A novel OC-SVM based ensemble learning framework for attack detection in AGC loop of power systems[J]. Electric Power Systems Research, 2022, 202: 107625.
|
[28] |
LI S M, PANDEY A, HOOI B, et al. Dynamic graph-based anomaly detection in the electrical grid[J]. IEEE Transactions on Power Systems, 2021, 37(5): 3408-3422.
|
[29] |
ZENG X J, YANG M, FENG C, et al. A generalized wind turbine anomaly detection method based on combined probability estimation model[J]. Journal of Modern Power Systems and Clean Energy, 2022, 11(4):1136-1148.
|
[30] |
CARRATÙ M, GALLO V, IACONO S D, et al. A novel methodology for unsupervised anomaly detection in industrial electrical systems[J]. IEEE Transactions on Instrumentation and Measurement, 2023,72: 1-12.
|
[31] |
GAO H, YANG D, CAI G, et al. Machine learning-based reliability improvement of ambient mode extraction for smart grid utilizing isolation forest[J]. IEEE Transactions on Power Systems, 2022, 38(5):4752-4760.
|
[32] |
HALLAC D, NYSTRUP P, BOYD S. Greedy Gaussian segmentation of multivariate time series[J]. Advances in Data Analysis and Classification, 2019, 13(3):727-751.
doi: 10.1007/s11634-018-0335-0
|
[33] |
WANG X, FLORES R, BROUWER J, et al. Real-time detection of electrical load anomalies through hyper-dimensional computing[J]. Energy, 2022,261:125042.
|
[34] |
吕政权, 李朝阳, 王海峰, 等. 基于GRU-CNN的综合能源网络安全攻击检测方法[J]. 华电技术, 2021, 43(2): 9-14.
|
|
LYU Zhengquan, LI Zhaoyang, WANG Haifeng, et al. An intrusion detection method for integrated energy network based on GRU-CNN[J]. Huadian Technology, 2021, 43(2): 9-14.
|
[35] |
任一鸣, 杜董生, 邓祥帅, 等. 基于GRU和GWO-KELM的电力线路故障诊断[J]. 综合智慧能源, 2024, 46(3): 54-62.
doi: 10.3969/j.issn.2097-0706.2024.03.007
|
|
REN Yiming, DU Dongsheng, DENG Xiangshuai, et al. Power line fault diagnosis based on GRU and GWO-KELM[J]. Integrated Intelligent Energy, 2024, 46(3): 54-62.
doi: 10.3969/j.issn.2097-0706.2024.03.007
|
[36] |
ZULFAUZI I A, DAHLAN N Y, SINTUYA H, et al. Anomaly detection using k-means and long-short term memory for predictive maintenance of large-scale solar (LSS) photovoltaic plant[J]. Energy Reports, 2023,9: 154-158.
|
[37] |
王文博, 刘绚, 林海, 等. 基于深度学习的电力工控流量应用层报文异常检测[J]. 电力系统自动化, 2023, 47(11):69-76.
|
|
WANG Wenbo, LIU Xun, LIN Hai, et al. Deep learning based anomaly detection for application-layer message of power industrial control communication traffic[J]. Automation of Electric Power Systems, 2023, 47(11):69-76.
|
[38] |
WANG G, WANG C, SHAHIDEHPOUR M, et al. Deep semi-supervised learning method for false data detection against forgery and concealing of faults in cyber-physical power systems[J]. IEEE Transactions on Smart Grid, 2024, 15(1):944-958.
|
[39] |
MAAMAR A, BENAHMED K. A hybrid model for anomalies detection in AMI system combining k-means clustering and deep neural network[J]. Computers, Materials & Continua, 2019, 60(1): 15-39.
|
[40] |
MESTAV K R, WANG X Y, TONG L. A deep learning approach to anomaly sequence detection for high-resolution monitoring of power systems[J]. IEEE Transactions on Power Systems, 2022, 38(1): 4-13.
|